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The substituent ordering problem in molecular libraries refers to identifying a rational ordering for molecular
moieties such that coarse sampling and interpolation over the full space of possible library molecules may be
efficiently performed. A practical solution to the ordering problem is proposed on the bases of (a) coarse
sampling of the molecular substituents, (b) radial basis function interpolation over the full space, and (c) the
use of genetic algorithms to find rational moiety orderings. The procedure is shown to be extremely effective
for a variety of simulated libraries. This algorithm is also used to reorder and predict the glass transition
temperatureTg for a combinatorial polymer library.

I. Introduction

Recent advances in combinatorial synthesis have made
possible the creation of libraries of thousands of structurally
diverse compounds.1,2 These libraries are often based on a single
molecular scaffold with several substituent sites.3-5 In polymer
libraries, substituents may be attached to sites on the repeat unit
or incorporated into the polymer backbone.6,7 Each compound
in the library is characterized by a unique combination of
substituent groups. If there areSdifferent substituent groups at
each scaffold site andN scaffold sites, then there are a total of
SN different compounds that can be synthesized from the
scaffold. The scaffold may also be considered as a variable for
sampling, but in the present paper the scaffold will be taken as
fixed.

Once a compound library is synthesized, it is usually tested
for some set of desirable properties. In the case of drug synthesis,
these properties may be biological activity, toxicity, etc., as
measured by a screening assay. In the case of polymer synthesis,
these properties may be the air-water contact angle, the glass
transition temperature, rheological measures, etc.6,7 The problem
of property optimization involves finding the set of substituents
that optimizes the properties of interest. This task becomes more
complex if multiple, and possibly competing, properties must
be simultaneously optimized. If the library synthesis is complete
(i.e., all of theSN possible compounds are synthesized and their
properties measured), then the best compound can be determined
directly from the screening data.

In practice, the screening data is often incomplete. The
synthesis and assaying of combinatorial libraries can be hindered
by a number of factors including low product yields, low quality
assays, and incomplete sampling. Furthermore, split-and-mix
techniques which in theory allow for the creation of complete
libraries cannot be easily applied to certain materials, such as
polymers, since large amounts of the compounds are often
needed for testing. Multiple parallel syntheses can be performed
on a larger scale than split-and-mix syntheses, but require
resources which grow linearly with the number of compounds
synthesized. As a result, the parallel synthesis of large libraries
can be prohibitively expensive. In most cases, the number of
compounds synthesized and tested is a small fraction of the
possible compounds.

Incomplete library data makes the problem of property
optimization more difficult, especially in the common case

where a balance between multiple properties must be sought.
Let M be the number of compounds synthesized and tested out
of theSN possible compounds, where typicallyM , SN. In this
context, property optimization may be viewed as a sparse
interpolation problem.8,9 Let S1, S2, ..., SN be the number of
different substituent groups available at each of theN scaffold
sites. Then we define the variablesX1, X2, ..., XN to represent
the type of substituents at scaffold sites 1, 2,..., N such that
each variableXi can take onSi integer values on the range [l,Si].
Hence, every compound in the library can be represented as an
N-dimensional vectorX of the discrete variables,X1, X2, ...,
XN. The measurementy associated with each compoundX can
be expressed as

The problem of optimizing the property described byy is
equivalent to optimizing the functiong(X) over a discrete
variable space. The perspective taken here does not call for the
use of any molecular descriptors or detailed knowledge of the
assay (e.g., the receptor).

Many algorithms for high-dimensional function optimization
are available, but molecular library optimization is not readily
amenable to traditional optimization methods. All nonlinear
optimization routines, such as gradient descent, simulated
annealing and genetic algorithms, rely on repeated evaluation
of the model function,g(X), to find an optimal solution.10,11

However, in the case of library optimization, extensive function
sampling is prohibitively time-consuming. To determine the
value ofg(X) for an unknown compound, this compound must
be synthesized and then tested.

Extensive function evaluation can be circumvented by using
a suitable regression technique to fit an analytic functionf(X)
to the model functiong(X) at theM sampled points. The analytic
functionf(X) can then be used to interpolate the sampled points
in order to predict the properties of the unsampled compounds.
However, interpolation is only possible if the property function
g(X) is relatively smooth between sampled points. In general,
the smoothness of the property function is dependent on the
appropriate assignment (i.e., ordering) of the substituents to the
discrete values 1, 2,..., Si for every lattice site,i ) 1, 2, ..., N.
If an incorrect assignment is made, then the property function
may be highly nonsmooth, and function interpolation will be
inaccurate.8,9 Property optimization can be broken up into three

y ) g(X) (1)
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steps: First, a method must be devised for treating the ordering
problem of assigning integer values to the substituents over the
range [1,Si] for all i. Multiple properties,gp(X), p ) 1, 2, ...,
may also be considered, with each property function likely
having its own substituent ordering. Second, an accurate sparse
data interpolation technique must be employed to represent the
data points as an analytic function,f(X). Third, an optimal
combination of substituents must be found by optimizingf(X)
over all the possible compounds. Though the second and third
steps are straightforward, they cannot be executed without
dealing with the ordering problem. Until now, no satisfactory
methods were expressed for finding an optimal ordering of the
substituents.8,9 In this study, an efficient method for solving the
substituent ordering problem is presented along with simulations
of its use with steps two and three. This method facilitates
accurate property prediction for compound libraries, which is
of vital importance in property optimization algorithms. In actual
practice, a full algorithm could best operate in a closed loop
fashion starting with as few sample points,X̃1, X̃2, ..., X̃M, as
possible, with iterative refinements to achieve the desired
resolution ofg(X). Guidance from analogous studies or model-
ing with standard descriptors could also be used to provide initial
hints at possible acceptable substituents and their orderings.

Section II defines the central ordering assignment problem
and describes the algorithm for its practical treatment. Section
III demonstrates the performance of the algorithm for several
test cases, and conclusions are presented in section IV.

II. Algorithm

Let Ri1, Ri2, ..., RiSi be theSi substituents that can be attached
to scaffold positioni. ThenXi can take on the integer values 1,
2, ..., Si. We define an orderingZi ) [Z i1, Zi2, ..., ZiSi] of the
substituentsRi1, Ri2, ..., RiSi as any permutation of the integers
1, 2, ..., Si. Each scaffold sitei ) 1, 2, ..., N will have its own
ordering Zi. We can uniquely assign integer values to the
substituentsRi1, Ri2, andRiSi on the basis of this ordering such
thatRi1 corresponds toXi ) Zi1; Ri2 corresponds toXi ) Zi2, ...;
andRiSi corresponds toXi ) ZiSi. We define a total ordering,Z
) [Z1, Z2, ..., ZN], to be a set ofN orderings which contains an
ordering for each axis. Because each of the lattice site
substituents can be ordered independently, there are S1! × S2!
× ... × SN! possible total orderings of the substituents.

An ordering possibly may be imposed on the substituents
based on physical intuition, prior analogous property behavior,
or modeling. However, unless the dependence of the property
g(X) on X is reliably known, a total ordering based on such
simple arguments can be misleading. Ideally, we would like to
find an ordering which is optimal based only on knowledge of
g(X) at a set ofM sampled points, with an aim toward further
refinement using additional sampling if better resolution ofg(X)
is required. An optimal total ordering of the variable axesX1,
X2, ..., XN is defined as the setZ ) [Z1, Z2, ..., ZN] such that
g(X) is a smooth function overX. The assumption of smooth
behavior overX is plausible on physical grounds, as any
propertyg(X) should draw on the substituent characteristics in
a systematic fashion. However, there will generally be multiple
total orderings that will serve nearly equivalently, since (a)
smoothness can be quantitatively defined in different ways and
(b) the smoothness property is only needed to make the
subsequent interpolation reliable. The physical/chemical origin
of the systematic smooth behavior may remain buried when
utilizing the algorithm, as its existence is all that is required
for success of the ordering algorithm. It is possible that some
physical systems could exhibit nonsmooth behavior. However,

in this case, traditional interpolation methods would also fail
without specific a priori knowledge of the property function.
Turning these arguments around, the patterns of observed
ordering regularity (or even their deviations) should be able to
provide the basis for a deeper physical understanding of
molecular properties.

Other knowledge or assumptions regarding the structure of
the property function can also be made to aid in property
prediction. An arbitrary property functiong(X) can be exactly
expressed as

wheref0 is a constant,fi (Xi) describes the independent action
of the substituent at scaffold sitei on the observed property,
and E(X) is a term which describes the dependence of the
observed property on the cooperative action of two or more
substituent sites. If the substituents on each scaffold site
contributes independently to the observed property, thenE(X)
) 0. Such a model function is said to be separable. This type
of analysis including consideration of higher-order cooperation,
is conveniently expressed in terms of a high-dimensional model
representation (HDMR) expansion.12-14

There are a number of alternative ways of exploiting the
HDMR algorithm for molecular property interpolation.8,9 In the
simplest approach, the constantf0 and the functionsf1 (X1), f2
(X2), ..., fN (XN) can be evaluated with respect to a representative
compound,Xh , which is known as the cut-center,

where “.” denotes all arguments set to their cut-center values.
The constantf0 is evaluated by sampling the property function
at the cut-center. Each of the functionsfi(Xi) is evaluated by
sampling the model function along theXi-axis through the cut-
center. Thus, a representation forg(X), initially neglecting
cooperativity effects in eq 2, can be obtained by structured
sampling of only ∑i

N(Si - 1)+ 1 compounds. Ifg(X) is
separable, then this representation will be exact. Furthermore,
the interpolation of a separable function is independent of the
substituent ordering and the choice of cut-centers.

The assumption of separability is not generally valid, as the
observed property may depend on the cooperative action of
multiple substituents. If a property function is nonseparable, then
the accuracy of interpolation will be dependent on both the
substituent ordering and the choice of cut-centers. However,
the cooperative action of substituents is often small relative to
the independent action described by the functions,f1(X1), f2-
(X2), ..., fN(XN). Thus, structured cut-center sampling can yield
valuable information regarding the behavior of the model
function. Furthermore, the effects of cooperativity between
substituents can be included by using multiple cut-centers,
additional random sampling of the library compounds, and the
selected inclusion of explicit cooperative terms residing inE(X)
in eq 2. These alternatives will not be fully explored in this
work but in section III, we will compare the performance of
the ordering algorithm on the bases of (a) randomly sampled
compound data and (b) data which has been sampled along the
substituent axes in reference to a cut-center and at additional
random points on the domain.

g(X) ) f0 + ∑
i

N

fi (Xi) + E(X) (2)

f0 ≡ g(Xh1, ., XhN) (3)

fi(Xi) ≡ g(Xh1, ., Xi, ., XhN) - f0 (4)
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Regardless of how theM samples are initially chosen, given
some total ordering,Z ) [Z1, Z2, ..., ZN], of all N variable axes,
we define the smoothnessJ of the total ordering as

whereX1, X2, ..., XR can be any sufficiently large set of the
library compounds andgZ (X) is the property represented with
total orderingZ. The gradient∇ is taken with respect to theN
variables constituting theX-space. Smoothness could be defined
in terms of higher order derivatives as well, but here we chose
the simplest case in eq 5. The norm||...|| in eq 5 is also subject
to definition of how and/or where it is evaluated in the full
domain of theX-space. We will approximategZ (X i) by an
analytic functionf(X), which will be determined fromg(X) at
the M data points,X̃1, X̃2, ..., X̃M. Generally, a regression
technique will be the easiest way of determiningf(X), since
X̃1, X̃2, ..., X̃M will be scattered data points. Any suitable basis
could be used for the regression, provided that it exhibits good
high-dimensional sparse data interpolation properties. Here we
chose theM radial basis functionsφ1, φ2, ..., φM, where

Thus,

where the vector of coefficientsc was determined by fitting
f(X) to getg(X) through linear regression. The gradient of the
regression functionf(X) can be calculated analytically,

Combining eq 5 and eq 8,

Thus, the smoothnessJ(Z) of any total orderingZ is ap-
proximated by eq 9. Equation 9 can be evaluated over any large
set ofR compounds. In this paper, we will evaluate eq 9 over
every compound in the substituent space, i.e.,R ) S1 × S2 ×
... × SN to ensure thatf(X) is smooth over the entire substituent
domain. It should be stressed that this process does not involve
sampling (i.e., synthesizing) and measuring the properties of
every compound in the substituent space, but only evaluating
the gradient of the analytic approximationf(X) at every point
in the substituent space.

To find an optimal total ordering,J(Z) was minimized over
the setZ of all possible total orderings

The minimization in eq 10 may have several extremaZ* of
possibly good quality. The algorithm need only find at least
one good solution. The minimization ofJ(Z) could be ac-
complished by a brute force algorithm that samples every
possible total ordering. However, the number of possible total
orderings grows as∏i

N Si!. Even for a relatively small library

with two scaffold sites and 10 substituents per site, there are
over 1.3× 1013 possible permutations. Thus, the complexity
of the problem makes a brute force implementation unfeasible.
The number of possible substituent orderings∏i

N Si! grows
faster than the number of compounds in the library∏i

N Si.
However, the search over the permutations of orderings can be
done off-line using a modest number (M , ∏i

N Si) of samples,
with the identified optimal orderingZ* to be subsequently
utilized for interpolation over the entire library of possible
compounds in the property optimization stage.

Finding a total ordering,Z*, which minimizesJ(Z) can be
accomplished efficiently by a genetic algorithm.11 Genetic
algorithms perform function optimization by treating each total
ordering as the genome for an individual “organism”. For the
purposes of the present optimization, the genomeZ consisted
of N genes,Z ) [Z1, Z2, ..., ZN]. Each gene,Z i, was the ordering
of the substituents at scaffold sitei. The smoothness of the total
orderingJ(Z) was used as the objective function. Individuals
with lower values ofJ(Z) were given a greater chance for
survival and reproduction. Thus, after a sufficient number of
generations, the genetic algorithm aims to find a minimal value
of J(Z).

The steady-state genetic algorithm implementation introduced
by Goldberg was used to find an optimal total ordering.11,15This
algorithm proceeds as follows: First, an initial population of
100 individuals was generated with random total orderings. Then
the objective function value for each individual in the population
was calculated. After each generation, the 10 worst individuals
were removed from the population. These individuals were
replaced by generating 10 new individuals which were the
offspring of the 90 remaining individuals. Individuals with lower
objective function scores were more likely to survive and
reproduce.

Different total orderings were sampled through genetic
mutation and crossover, which occurred during the mating
process. Mating was accomplished through sexual selection
which favored individuals with lower objective function scores.
To generate each offspring, two parents were selected with a
probability proportional to the inverse of their objective function
scores. If neither crossover nor mutation occurred, then the
offspring was a genetic replica of one of the parents. Genetic
crossover occurred with a probability of 0.8. If crossover
occurred, then the genetic code of the offspring was generated
by selecting each gene from either parent with equal probability.
Thus, the product of crossover was a single offspring which
incorporated genes from each parent. Mutation occurred sepa-
rately for each gene with a probability of 0.2 and could occur
along with crossover. If mutation occurred, then a segment of
random length was removed from the mutated gene and
reinserted into a random position in the gene. Figure 1 shows

J(Z) )
1

R
∑

i

R

||∇gZ (Z i)||2 (5)

φk(X) ) (|X̃k - X|2 + 1)1/2 (6)

f(X) ) ∑
k

M

ck(|X̃k - X|2 + 1)1/2 (7)

∇jf(X) ≡ ∂

∂Xj

f(X) ) ∑
k

M

-ck(|X̃k - X|2 + 1)1/2 (X̃kj - Xj) (8)

J(Z) ≈ 1

R
∑

i

R

∑
j

N

(∑
k

M

- ck(|X̃k - X|2 + 1)1/2(X̃kj - Xj))
2 (9)

min
Z ∈ Z

J(Z) (10)

Figure 1. Schematic diagram of genetic mutation and crossover for
the ordering of a library of compounds with three scaffold sites. Each
site has a possible substituent ordering,Z i. The total ordering is given
by Z ) [Z1, Z2, Z3].
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a schematic illustration of crossover and mutation. The frequent
occurrence of crossover and mutation ensured that the genetic
algorithm sampled a diverse selection of orderings.

The definitions for mutation and crossover were based on
the logical behavior of the objective functionJ(Z). For instance,
it is likely that an individual possessing a gene for the optimal
ordering of a single scaffold site will have a low objective
function score. Thus, crossover preserves the entire ordering of
a single scaffold site (i.e., a gene of one parent) in the genetic
code of the offspring (cf., Figure 1). As each scaffold site will
likely have a unique chemical/physical role upon the observable,
it generally makes no sense to consider crossover between
different sites (i.e., different genes). Similarly, low objective
function scores may be the result of large segments in a gene
which are optimally ordered. Mutation attempts to correct the
poorly ordered segments of individual genes through rearrange-
ment.

In the limit of a sufficient number of generations, genetic
algorithms will explore the entire substituent ordering spaceZ.
However, such a thorough exploration would be prohibitively
time-consuming and generally unnecessary, as any good solution
should suffice for molecular property interpolation. The ef-
ficiency and accuracy of the genetic ordering algorithm were
investigated for several test cases based on a fixed number,M,
of data samples. The results of these experiments are given in
section III. No attempt was made to explore an iterative
algorithm that would seek a minimal number of samples for a
specified level of smoothness.

III. Illustrations

Several numerical experiments were performed to test the
utility of the ordering algorithm. First, the algorithm was tested
by using simulated data generated by a linear, separable property
function. The performance of the algorithm was then tested using
a more complicated quadratic model function with cooperative
coupling. Finally, the algorithm was used to predict the glass
transition temperatures of a library of copolymers studied in a
previous paper.7

For the first example, a library with three substituent sites
(N ) 3) and 10 substituents per site (S1 ) S2 ) S3 ) 10) was
considered. Thus, the complete library had 1000 compounds.
The property function was

where Z refers to the total ordering of the substituents. A
reference case was chosen asZseqwith sequential ordering (see
Table 1). EachXi (i ) 1, 2, 3) took integer values on the
range.1,10 We define

to be the smoothness of the sequential total ordering for a given
data set as defined by eq 9. Asmooth total orderingis defined
to be any total orderingZ* such thatJ(Z*) e Jseq. In general,
a finite sample size can effect the distribution of smooth total
orderings over the ordering spaceZ andZseqmay not actually

be the smoothest ordering as defined by eqs 5 and 10. It is also
not guaranteed that there is a unique smooth total ordering for
any function; many total orderings may be display good local
optimality, as defined in eq 10.

In this first example, the cut-HDMR approach based on eq 2
would immediately lead to the solutionJ(Zseq) as the function
g(X) in eq 11 is separable. Thus, as a more general test of the
reordering procedure, a data set was generated by randomly
sampling M ) 100 of the library compounds, with the
constraints that every substituent was used in at least one
sampled compound and that no compounds were duplicated.
Using this data set, the genetic ordering algorithm was run for
2000 generations. Figure 2 shows a plot of the best solution
versus generation. The genetic algorithm converged to a
solution,Z*, with objective function valueJ(Z*) ) 2.78 after
1100 generations. Since 10 new individuals were created each
generation to replace the 10 worst individuals, each generation
required the sampling of 10 new total orderings. Thus, the
genetic algorithm located an optimal solutionZ* by sampling
1.11× 104 total orderings on the spaceZ. The objective function
value of the sequential total ordering wasJseq ) 2.82. Hence,
the genetic algorithm converged to an optimal total ordering.
Furthermore, this optimal total ordering recovered the relative
ordering ofZseqfor almost all of the substituents (see Table 1).
A radial basis function regression using theM ) 100 sampled
points and the optimal orderingZ* was used to predict the model
function values for the unsampled points. The average RMS
error of the regression on the 900 unsampled points was 0.65.
Figure 3 shows a plot of the predicted value of the model
function versus the actual value of the model function. For
comparison, a radial basis function regression using the same
M ) 100 sampled points and a random (i.e., nonsmooth)
ordering gave an average RMS error of 5.0. Figure 4 shows
the predicted versus the actual value of the model function for
the random ordering. Comparing Figure 3 to Figure 4 shows
that substantial gains in accuracy were made by determining a
smooth ordering for the substituents prior to regression.

The efficiency of the genetic algorithm was then compared
to a brute force implementation by sampling the objective
function values of 1.11× 104 randomly selected total orderings
on the ordering spaceZ. None of these total orderings displayed
an objective function value of less than 9. Figure 5 shows a
histogram of the smoothness values. The distribution of smooth-
ness values had a mean ofJ ) 18.6 and a standard deviation of

TABLE 1: Reordering of Substituents for the Linear Model
Function in Equation 11: Inversion of Order for Z 1 and Z2
Is Irrelevant, since Only Relative Ordering Is Significant

Zseq Z*

Z1 1 2 3 4 5 6 7 8 9 10 9 10 8 7 6 5 4 3 2 1
Z2 1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 1 2
Z3 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 2. Smoothness of the best solution versus genetic algorithm
generation for reordering of the linear model function. The dashed line
is the smoothnessJseq of the sequential ordering.

gZ(X) ) X1 + X2 + X3 (11)

Jseq≡ J(Zseq) (12)
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2.3. If we estimate that this distribution is approximately
Gaussian, then a brute force implementation would have
required more than∼1011 samplings to find an optimal total
ordering with a smoothness value of less thanJseq.

The next example tested the algorithm using a nonlinear
model function,

We again considered a scaffold with three substituent sites and
10 substituents per site, giving a complete library of 1000
compounds. Thus, each variableXi again took integer values
on the range [1, 10], as in the first example. The observed values
of M ) 100 randomly selected compounds were used as the
data set. The objective function value of the sequential total
orderingZseq in Table 2 wasJseq ) 236.

The genetic ordering algorithm was run for 1000 generations
and was again able to converge to a smooth total ordering
despite the increased complexity of the model function. Figure
6 shows a plot of the best solution versus generation. The genetic
algorithm converged to a solutionZ* with objective function

value J(Z*) ) 229 after 699 generations and a total of 7090
objective function evaluations. The optimal total ordering located
by the genetic algorithm also displayed good agreement with
the sequential total ordering of the model function (see Table
2). A radial basis function regression using theM ) 100 sampled
points and the optimal orderingZ* was able to predict the model
function values for the 900 unsampled points with an average
RMS error of 11.6. Figure 7 shows a plot of the predicted versus
the actual value of the model function for the optimal ordering.
For comparison, a radial basis function regression using the same
M ) 100 sampled points and a random (i.e., nonsmooth)
ordering gave an average root-mean square (rms) error of 33.3.
Figure 8 shows the predicted versus the actual value of the
model function for the random ordering. Comparing Figure 7

Figure 3. Predicted values of the linear model function using the
identified smooth orderingZ* versus the actual values for the 900
unsampled data points.

Figure 4. Predicted values of the linear model function using a random
(i.e., nonsmooth) orderingZ versus the actual values for the 900
unsampled compounds. This behavior should be compared to that found
in Figure 3 using the identified optimal orderingZ*.

gZ(X) ) X1
2 - (X2 - X3)

2 (13)

Figure 5. Histogram of smoothness values for 1.1× 104 randomly
sampled orderings of the linear model function. Random sampling of
the orderings is shown to be very inefficient compared to using the
genetic algorithm in Figure 2.

Figure 6. Smoothness of best solution versus genetic algorithm
generation for the reordering of the quadratic model function. The
dashed line is the smoothnessJseq of the sequential ordering.

TABLE 2: Reordering of Substituents for Quadratic Model
Function in Equation 13: Inversion of Order for Z 1 Is
Irrelevant since Only Relative Ordering Is Significant

Zseq Z*

Z1 1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 1 2
Z2 1 2 3 4 5 6 7 8 9 10 1 2 3 4 6 5 7 10 9 8
Z3 1 2 3 4 5 6 7 8 9 10 2 4 1 3 5 7 6 8 9 10
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to Figure 8 again shows that significant gains in accuracy were
made by determining a smooth ordering for the substituents prior
to regression.

Having verified the behavior of the ordering method to find
a smooth ordering using simulated data, the algorithm was
applied to experimental data from a polymer library. A previous
study by Reynolds et al. used Quantitative Structure-Property
Relationships (QSPR) to predict the properties of a 112-
compound polymer library from a representative 17-polymer
data set.7 The library considered by Reynolds et al. consisted
of two substituent sites: a diol substituent and diacid substituent.
A total of 14 diols and 8 diacids were used to synthesize a
complete library of (14)(8)) 112 compounds. Property predic-
tion was accomplished using two-dimensional topological
descriptors to characterize the substituent groups. The glass
transition temperature propertyTg of the polymers in this library
was found to be highly dependent on the chain length of the
substituent diacids and diols.6 Once suitable molecular descrip-
tors were identified, QSPR models were then derived from the
experimentalTg values for the representative 17-polymer data
set using linear regression. These models were shown to have
good agreement with the experimental values ofTg.

Rather than using traditional descriptors as a guide, the present
algorithm used only the experimentalTg values of a subset of
the library compounds. Thus, no additional information regard-
ing the structure or physical properties of the substituents was
incorporated into the prediction algorithm. As with the prior
two examples, the primary purpose here is to test the essential
reordering algorithm; later work will aim to exploit features
such as simplification with HDMR, inclusion of data errors,
and generalization to more complicated physical systems. To
investigate the influence of structured and unstructured sampling
on property prediction, we applied the ordering algorithm to
two different data sets, each consisting of 35 library compounds.
The first data set A consisted of 35 randomly sampled
compounds. The second data set B consisted of 21 compounds
selected by cut-center structured sampling and an additional 14
randomly selected compounds to account for nonseparability.
The cut-center compound was arbitrarily chosen as the first
compound listed in the data table provided by Reynolds et al.7

The reference sequential total ordering,Zseqof the substituents
was the order in which the substituents were listed in this data
table. However, unlike the first two test cases, the original
sequential total ordering for the polymer library was not a
rational, smooth ordering. Figure 9 shows a plot ofgZseq(X) with
the 35 sampled compounds in data set A highlighted, and it is
evident that a scattered sampling ofM,12 compounds will
produce unreliable interpolation without first seeking an optimal
ordering of the substituents. To find a rational total ordering,
Z*, for which the model function was smooth, the genetic
ordering algorithm was used.

The genetic algorithm converged to total orderings for both
data sets within 1000 generations. Table 3 compares the total
orderingZA obtained for data set A to the total orderingZB

obtained for data set B. The orderings of both the diol and diacid
substituents obtained for both data sets showed extensive
agreement. Figure 10 shows a plot of smoothness versus
generation. Figures 11 and 12 show plots ofg(X) versusX using
ZA andZB, respectively. The increase in smoothness for both
data sets achieved by the genetic algorithm was significant upon

Figure 7. Predicted values of the quadratic model function using the
smooth orderingZ* versus the actual values for the 900 unsampled
data points.

Figure 8. Predicted values of the quadratic model function using a
random (i.e., nonsmooth) orderingZ versus the actual values for the
900 unsampled compounds. This behavior should be compared to that
found in Figure 7 using the identified optimal orderingZ*.

Figure 9. Plot the experimentalTg values versus polymer substituents
for the original sequential ordering,Zseq. X1 is the diacid substituent
variable.X2 is the diol substituent variable. Compounds sampled in
data set A are shown.

TABLE 3: Reordering of Substituents for the Experimental
Tg Data Using Data Sets A and B: Z1 Is the Ordering of the
Diacid Substituent, and Z2 Is the Ordering of the Diol
Substituent.

ZA

Z1 2 8 7 6 5 4 3 1
Z2 7 4 2 12 10 11 9 1 6 13 14 8 3 5

ZB

Z1 2 7 8 6 5 4 3 1
Z2 12 11 4 7 10 2 9 1 6 13 14 8 3 5

Molecular Library Optimization J. Phys. Chem. A, Vol. 107, No. 12, 20032071



comparison of these figures to the sequentially ordered function
shown in Figure 9. In each case, the genetic algorithm used a
data set of only 35 compounds to determine a smooth total
ordering, and this total ordering generated a smooth model
function over all 112 synthesized compounds. The surfacesgZA-
(X) andgZB(X) in Figures 11 and 12 from data sets A and B
show considerable similarity as well as some distinct differences
at smaller values ofX2. These differences are of no relevance
for property estimation, as smoothness is the only essential

characteristic needed for interpolation. Both surfaces could serve
equally well for property optimization and interpolation as
shown below. The precise appearance of the surfaces depends
on the defined smoothness cost in eq 5 as well as the sampled
data. The introduction of an additional curvature cost (i.e., (1/
R)∑i

R||∇2gZ(X i)||) would tend to make the surfaces more
similar in cases A and B.

The values forTg predicted by the regression functionf(X)
using the optimal total orderingZ* were compared to the known
values ofTg for the unsampled library compounds. Sampling
and reordering of the library compounds led to a significant
increase in prediction accuracy. Using the randomly sampled
data in set A and the corresponding total orderingZA obtained
by the genetic algorithm, the prediction ofTg for the 77
unsampled compounds showed an average RMS error of 6.1
°C. Using the structured sampling of data set B and the
corresponding total orderingZB, the prediction ofTg for the 77
unsampled compounds showed an average error of 8.1°C. In
comparison, the best RMS error achieved by Reynolds et al.
was 7.1°C. Figure 13 shows a plot of the predicted values of
Tg versus the experimental values ofTg for the 77 unsampled
library compounds using the total orderingZA, and Figure 14
shows the same plot using the total orderingZB. The statistics
in Figure 14 using data set B show a small but evident bias.

Figure 10. Smoothness of best solution versus genetic algorithm
generation for the reordering of experimental glass transition temper-
ature, Tg, data from data sets A and B. Data set A contained
experimentalTg values for 35 randomly sampled compounds. Data set
B contained experimentalTg values for 21 compounds selected by cut-
center sampling and 14 additional randomly selected compounds.

Figure 11. Plot of Tg versus polymer substituents for the optimal
orderingZA using data set A.X1 is the diacid substituent variable.X2

is the diol substituent variable. Compounds sampled in data set A are
highlighted.

Figure 12. Plot of Tg versus polymer substituents for the optimal
orderingZB using data set B.X1 is the diacid substituent variable.X2

is the diol substituent variable. Compounds sampled in data set B are
highlighted.

Figure 13. Predicted values versus experimental values forTg of 77
unsampled polymers using data set A.

Figure 14. Predicted values versus experimental values forTg of 77
unsampled polymers using data set B.
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This behavior likely arises from choosing a single cut-center
for structured sampling, as such a choice puts undue emphasis
on the reliability of that small data set.

Finally, we compared the performance of the property
prediction algorithm to a straightforward regression approach
which did not search for a smooth total ordering. Using the
original sequential total orderingZseq, a radial basis regression
was used to fit the experimental data for the 35 sampled
compounds from data set B. The prediction of this regression
function for the 77 unsampled compounds showed an average
RMS error of 25.1°C. Figure 15 shows a plot of the predicted
values ofTg versus the experimental values ofTg for the 77
unsampled compounds using the sequential total ordering. Thus,
comparing Figures 13 and 14 to Figure 15 shows that substantial
gains in accuracy were made by determining a smooth total
ordering for the substituents prior to regression.

Although the quality of the results of Reynolds et al. and
those achieved by the reordering of data sets A and B are
comparable, the procedures are quite different. Working with
descriptors in more complex applications, especially of increas-
ing dimensionality, is a very difficult task. On the other hand,
the simple assumption of property regularity should remain just
as valid as the dimension rises, and the efficiency of this process
should increase with dimension. In the third example, the
laboratory synthesis of 35 polymers can be accomplished in a
reasonable amount of time, but synthesizing one-third of the
compounds in a complete library for the purposes of library
optimization is usually unfeasible. Fortunately, the efficiency
of the substituent ordering algorithm should improve signifi-
cantly with increased dimensionality, i.e., more scaffold sites,
and with more substituents per dimension. For instance, the
ordering algorithm achieved optimal total orderings for the linear
and the quadratic three-dimensional simulated model functions
using only one tenth of the number of compounds in the
complete library. In general, the ordering algorithm is limited
by the sampling frequency of each substituent. Optimal per-
formance for random sampling is achieved if each substituent
appears in multiple sample compounds. If the library compounds
are sampled using cut-center regular sampling, then the number
of sample compounds scales asO(SN), along with the addition
of some modest number of random samples. On the other hand,
the number of total library compounds grows asO(SN). In low
dimensions and small values ofS, the sampling density for re-
ordering can be achieved only by synthesizing a large fraction

of the complete library. However, even forN ) 2 andS )
100, as in many pharmaceutical libraries, a reordering sample
size ofM , 104 will likely be sufficient. As the dimensionality
of the library increases, it is estimated that a much smaller
fraction of the complete library may be synthesized for
equivalent interpolation performance.

IV. Conclusions

As the size and complexity of compound libraries increase,
new tools will be needed to analyze and utilize the data produced
by screening experiments. In particular, the extensive molecular
diversity of the substituents used in compound libraries makes
the prediction of activity and other properties more difficult.
This problem becomes increasingly vexing when multiple
competitive properties must be simultaneously met. In such
cases, it would be highly desirable to have as thorough a
coverage as possible of the full library of compounds. However,
direct synthesis of full libraries is generally not possible. The
chemical properties of the substituents can also vary dramati-
cally, thereby making it difficult to identify the proper sub-
stituent descriptors responsible for compound properties. The
inadvertent omission of an important descriptor or overemphasis
of a less important descriptor could lead to inaccurate and
misleading property prediction. The algorithm presented in this
paper does not rely on traditional descriptors. The only
“descriptor” used in the ordering algorithm is a discrete
numerical index label for each substituent. This simplicity makes
for generic applicability of the algorithm.

Substituent ordering provides a means for the elucidation of
structure-property relationships without the assumption of a
prior model. The substituent ordering algorithm has been shown
to be effective in identifying the underlying model structure
from simulated and experimental property data. Furthermore,
the algorithm can identify an optimal reordering without
sampling a prohibitively large number of orderings that would
be necessitated by a brute force approach. The efficiency and
generality of the substituent ordering algorithm should make it
a simple and powerful tool for library optimization and analysis.

Future research will explore the performance of the substituent
ordering algorithm for larger compound libraries including those
with higher dimensions. The inclusion of physical information
regarding the model function will also be considered. For
instance, the careful choice of a representative cut-center
compound can sometimes improve prediction ability of struc-
tured sampling. Use of multiple cut centers and additional
randomly sampled data can greatly improve property prediction.
It would also be natural to build in the expectation of there
being only relatively low-order substituent cooperation to fully
utilize the capabilities of HDMR.8,9 Empirical ordering of the
substituents based on perceived important physical properties
of the substituents may also be used to guide the ordering
algorithm. The impact of input data error on the re-ordering
and subsequent interpolation behavior needs to be investigated.

In addition, the use of radial basis functions, though suc-
cessful, is not necessarily optimal. Other basis sets may be used
for estimating the smoothness of substituent orderings and for
data interpolation. It is hoped that further development of the
substituent ordering algorithm will increase both the efficiency
and the accuracy of property prediction in compound libraries.
Finally, although this work was motivated by the desire to
estimate molecular library properties as efficiently as possible,
there are ancillary benefits to revealing library regularity. In
particular, it may be argued that revealing regular (i.e., smooth)
behavior over the full space of compounds is an essential step

Figure 15. Predicted values versus experimental values forTg of 77
unsampled polymers using data set B without reordering.
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toward physically understanding the origin of molecular proper-
ties, as well as molecular recognition in those cases where the
properties arise from molecule-receptor interactions.

Acknowledgment. The authors acknowledge support from
the Princeton Plasma Laboratory and the Air Force Office of
Scientific Research.

References and Notes

(1) Terrett, N. K.; Gardner, M.; Gordon, D. W.; Kobylecki, R. J.;
Steele, J.Tetrahedron1995, 51, 8135.

(2) Thompson, L. A.; Ellman, J. A.Chem. ReV. 1996, 1, 555.
(3) Cheng, S.; Comer, D. D.; Myers, P. L.; Saunders, J.Tetrahedron

Lett. 1999, 40, 8975.
(4) Sutton, A. E.; Clardy, J.Tetrahedron Lett.2001, 42, 547.

(5) Guan, Y.; Green, M. A.; Bergstrom, D. E.J. Comb. Chem.2000,
2, 297.

(6) Brocchini, S.; James, K.; Tangpasuthadol, V.; Kohn, J.J. Am.
Chem. Soc.1997, 119, 4553.

(7) Reynolds, C. H.J. Comb. Chem.1999, 1, 297.
(8) Li, G.; Rosenthal, C.; Rabitz, H.J. Phys. Chem. A2001, 105,

7765-7777.
(9) Rabitz, H.; Li, B.; Pierce, L.; Carey, J. In preparation. 2002.

(10) Bard, Y.Nonlinear Parameter Estimation; Academic Press: New
York, 1974.

(11) Goldberg, D. E.Genetic Algorithms in Search, Optimization, and
Machine Learning; Addison-Wesley: Reading, MA, 1989.
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