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The substituent ordering problem in molecular libraries refers to identifying a rational ordering for molecular
moieties such that coarse sampling and interpolation over the full space of possible library molecules may be
efficiently performed. A practical solution to the ordering problem is proposed on the bases of (a) coarse
sampling of the molecular substituents, (b) radial basis function interpolation over the full space, and (c) the
use of genetic algorithms to find rational moiety orderings. The procedure is shown to be extremely effective
for a variety of simulated libraries. This algorithm is also used to reorder and predict the glass transition
temperaturely for a combinatorial polymer library.

I. Introduction where a balance between multiple properties must be sought.
Let M be the number of compounds synthesized and tested out
of the SV possible compounds, where typicaly< SV. In this
context, property optimization may be viewed as a sparse
interpolation problent:® Let S, S, ..., Sy be the number of
[different substituent groups available at each ofhscaffold
sites. Then we define the variabl¥g, X;, ..., Xy to represent

the type of substituents at scaffold sites 1..2,N such that
each variable can take or§ integer values on the rangedl,
Hence, every compound in the library can be represented as an
N-dimensional vectoX of the discrete variables{i, X, ...,

Xn. The measurementassociated with each compouKdcan

be expressed as

Recent advances in combinatorial synthesis have made
possible the creation of libraries of thousands of structurally
diverse compounds? These libraries are often based on a single
molecular scaffold with several substituent sitesIn polymer
libraries, substituents may be attached to sites on the repeat uni
or incorporated into the polymer backbdh&Each compound
in the library is characterized by a unique combination of
substituent groups. If there agifferent substituent groups at
each scaffold site and scaffold sites, then there are a total of
SV different compounds that can be synthesized from the
scaffold. The scaffold may also be considered as a variable for
sampling, but in the present paper the scaffold will be taken as
fixed. N _— y=9() ()

Once a compound library is synthesized, it is usually tested
for some set of desirable properties. In the case of drug synthesisThe problem of optimizing the property described pyis
these properties may be biological activity, toxicity, etc., as equivalent to optimizing the functiog(X) over a discrete
measured by a screening assay. In the case of polymer synthesis;ariable space. The perspective taken here does not call for the
these properties may be the-awater contact angle, the glass use of any molecular descriptors or detailed knowledge of the
transition temperature, rheological measuresé €fthe problem assay (e.g., the receptor).
of property optimization involves finding the set of substituents ~ Many algorithms for high-dimensional function optimization
that optimizes the properties of interest. This task becomes moreare available, but molecular library optimization is not readily
complex if multiple, and possibly competing, properties must amenable to traditional optimization methods. All nonlinear
be simultaneously optimized. If the library synthesis is complete optimization routines, such as gradient descent, simulated
(i.e., all of theSN possible compounds are synthesized and their annealing and genetic algorithms, rely on repeated evaluation
properties measured), then the best compound can be determinedf the model functiong(X), to find an optimal solutiod?11
directly from the screening data. However, in the case of library optimization, extensive function

In practice, the screening data is often incomplete. The sampling is prohibitively time-consuming. To determine the
synthesis and assaying of combinatorial libraries can be hinderedvalue ofg(X) for an unknown compound, this compound must
by a number of factors including low product yields, low quality be synthesized and then tested.
assays, and incomplete sampling. Furthermore, split-and-mix Extensive function evaluation can be circumvented by using
techniques which in theory allow for the creation of complete a suitable regression technique to fit an analytic funcf{®®)
libraries cannot be easily applied to certain materials, such asto the model functiorg(X) at theM sampled points. The analytic
polymers, since large amounts of the compounds are oftenfunctionf(X) can then be used to interpolate the sampled points
needed for testing. Multiple parallel syntheses can be performedin order to predict the properties of the unsampled compounds.
on a larger scale than split-and-mix syntheses, but require However, interpolation is only possible if the property function
resources which grow linearly with the number of compounds g(X) is relatively smooth between sampled points. In general,
synthesized. As a result, the parallel synthesis of large librariesthe smoothness of the property function is dependent on the
can be prohibitively expensive. In most cases, the number of appropriate assignment (i.e., ordering) of the substituents to the
compounds synthesized and tested is a small fraction of thediscrete values 1, 2,., S for every lattice sitej = 1, 2,..., N.
possible compounds. If an incorrect assignment is made, then the property function

Incomplete library data makes the problem of property may be highly nonsmooth, and function interpolation will be
optimization more difficult, especially in the common case inaccuraté:® Property optimization can be broken up into three
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steps: First, a method must be devised for treating the orderingin this case, traditional interpolation methods would also fail
problem of assigning integer values to the substituents over thewithout specific a priori knowledge of the property function.
range [1,S] for all i. Multiple propertiesgy(X), p=1, 2, ..., Turning these arguments around, the patterns of observed
may also be considered, with each property function likely ordering regularity (or even their deviations) should be able to
having its own substituent ordering. Second, an accurate sparserovide the basis for a deeper physical understanding of
data interpolation technique must be employed to represent themolecular properties.

data points as an analytic functiof{x). Third, an optimal Other knowledge or assumptions regarding the structure of
combination of substituents must be found by optimizi() the property function can also be made to aid in property

over all the possible compounds. Though the second and thirdprediction. An arbitrary property functiop(X) can be exactly
steps are straightforward, they cannot be executed withoutexpressed as

dealing with the ordering problem. Until now, no satisfactory

methods were expressed for finding an optimal ordering of the N

substituent$:® In this study, an efficient method for solving the g(X) =f,+ Z f, (X) + E(X) 2)

substituent ordering problem is presented along with simulations T

of its use with steps two and three. This method facilitates

accurate property prediction for compound libraries, which is wheref, is a constantf; (X;) describes the independent action

of vital importance in property optimization algorithms. In actual of the substituent at scaffold siteon the observed property,

practice, a full algorithm could best operate in a closed loop and E(X) is a term which describes the dependence of the

fashion starting with as few sample poink§,, X, ..., Xu, as observed property on the cooperative action of two or more

possible, with iterative refinements to achieve the desired substituent sites. If the substituents on each scaffold site

resolution ofg(X). Guidance from analogous studies or model- contributes independently to the observed property, B@)

ing with standard descriptors could also be used to provide initial = 0. Such a model function is said to be separable. This type

hints at possible acceptable substituents and their orderings. of analysis including consideration of higher-order cooperation,
Section Il defines the central ordering assignment problem is conveniently expressed in terms of a high-dimensional model

and describes the algorithm for its practical treatment. Section representation (HDMR) expansiéfr.14

Il demonstrates the performance of the algorithm for several There are a number of alternative ways of exp|oiting the

test cases, and conclusions are presented in section IV. HDMR algorithm for molecular property interpolati§f.In the
simplest approach, the constdaaind the functiond; (Xi), f2
II. Algorithm (X2), .., fn (Xn) can be evaluated with respect to a representative

LetR1, Ry, .., Rg be theS substituents that can be attached compoundX, which is known as the cut-center,

to scaffold positiori. ThenX; can take on the integer values 1, S S
2, ..., S. We define an ordering; = [Zi1, Zi, ..., Zs] of the fo= 9%, = X) ©)
substituentsx1, R, ..., Rs as any permutation of the integers - -
1,2,..,S. Each scaffoldssitda =1, 2,... Nwill have its own fi(X) = 90X, = X, = %) — o )
ordering Z. We can uniquely assign integer values to the
substituentsR;, Rz, andRs on the basis of this ordering such ~ Where “=" denotes all arguments set to their cut-center values.
thatR corresponds t&; = Zi1; R corresponds t&; = Ziy, ...; The constant; is evaluated by sampling the property function
andRs corresponds t&; = Zs. We define a total ordering at the cut-center. Each of the functiofis() is evaluated by
= [Z1, Z2, ..., Z\], to be a set o orderings which contains an sampling the model function along tig-axis through the cut-
ordering for each axis. Because each of the lattice site center. Thus, a representation fgfX), initially neglecting
substituents can be ordered independently, there fre S,! cooperativity effects in eq 2, can be obtained by structured
x ... x §\! possible total orderings of the substituents. sampling of only ¥(S — 1)+ 1 compounds. Ifg(X) is

An ordering possibly may be imposed on the substituents separable, then this representation will be exact. Furthermore,
based on physical intuition, prior analogous property behavior, the interpolation of a separable function is independent of the
or modeling. However, unless the dependence of the propertysubstituent ordering and the choice of cut-centers.
g(X) on X is reliably known, a total ordering based on such The assumption of separability is not generally valid, as the
simple arguments can be misleading. Ideally, we would like to observed property may depend on the cooperative action of
find an ordering which is optimal based only on knowledge of multiple substituents. If a property function is nonseparable, then
g(X) at a set oM sampled points, with an aim toward further the accuracy of interpolation will be dependent on both the
refinement using additional sampling if better resolutiog@©f) substituent ordering and the choice of cut-centers. However,
is required. An optimal total ordering of the variable axas the cooperative action of substituents is often small relative to
X, ..., Xy is defined as the s&@ = [Z;, Z5, ..., Zy] such that the independent action described by the functidi(¥Xy), f2-
g(X) is a smooth function oveX. The assumption of smooth  (Xp), ..., fn(Xn). Thus, structured cut-center sampling can yield
behavior overX is plausible on physical grounds, as any valuable information regarding the behavior of the model
propertyg(X) should draw on the substituent characteristics in function. Furthermore, the effects of cooperativity between
a systematic fashion. However, there will generally be multiple substituents can be included by using multiple cut-centers,
total orderings that will serve nearly equivalently, since (a) additional random sampling of the library compounds, and the
smoothness can be quantitatively defined in different ways and selected inclusion of explicit cooperative terms residing(x)
(b) the smoothness property is only needed to make thein eq 2. These alternatives will not be fully explored in this
subsequent interpolation reliable. The physical/chemical origin work but in section Ill, we will compare the performance of
of the systematic smooth behavior may remain buried when the ordering algorithm on the bases of (a) randomly sampled
utilizing the algorithm, as its existence is all that is required compound data and (b) data which has been sampled along the
for success of the ordering algorithm. It is possible that some substituent axes in reference to a cut-center and at additional
physical systems could exhibit nonsmooth behavior. However, random points on the domain.
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Regardless of how thiel samples are initially chosen, given
some total orderingZ = [Z1, Z, ..., Zn], Of all N variable axes,
we define the smoothnessof the total ordering as

JZ—ERVZZ 2 5
()—RZII g~ (Z)Il (5)

where X1, X», ..., Xg can be any sufficiently large set of the
library compounds ang? (X) is the property represented with
total orderingZ. The gradien¥ is taken with respect to th
variables constituting th¥-space. Smoothness could be defined

in terms of higher order derivatives as well, but here we chose

the simplest case in eq 5. The nofm.|| in eq 5 is also subject

to definition of how and/or where it is evaluated in the full
domain of theX-space. We will approximateg? (X;) by an
analytic functionf(X), which will be determined frong(X) at

the M data points,X1, X, ..., Xu. Generally, a regression
technique will be the easiest way of determiniffy), since

X1, X2, ..., Xu will be scattered data points. Any suitable basis
could be used for the regression, provided that it exhibits good

high-dimensional sparse data interpolation properties. Here we

chose theM radial basis functiongs, ¢, ..., ¢m, Where

B X) = (X, — X|* + 1) (6)

Thus,

M

f(X) = ch(p?k - X?+1)" ©)

where the vector of coefficients was determined by fitting
f(X) to getg(X) through linear regression. The gradient of the
regression functiofi(X) can be calculated analytically,

M

0 - -
f(X) = Z—ckuxk = X2+ 1" (X — %) (8)

ij(X) = 3_

X

Combining eq 5 and eq 8,

R N M

D~ ZZ(Z — G (IX = X[P+ 1Y% — X)) (9)

Thus, the smoothnes¥Z) of any total orderingZ is ap-

Shenvi et al.

Offspring

Mutation

Offspring Offspring
Z, (1) B ST6I7R000 (IISI6T71R) B (010}
000117777 —— (O T1111 M
Z; O3 711771] [NEEEENENEE]
Figure 1. Schematic diagram of genetic mutation and crossover for
the ordering of a library of compounds with three scaffold sites. Each

site has a possible substituent orderifg,The total ordering is given
by Z = [Zl, Zs, 23].

with two scaffold sites and 10 substituents per site, there are
over 1.3 x 10" possible permutations. Thus, the complexity
of the problem makes a brute force implementation unfeasible.
The number of possible substituent orderirmg S! grows
faster than the number of compounds in the Iibrﬂ&) S.
However, the search over the permutations of orderings can be
done off-line using a modest numbé |'|iN S) of samples,
with the identified optimal orderin@* to be subsequently
utilized for interpolation over the entire library of possible
compounds in the property optimization stage.

Finding a total orderingZ*, which minimizesJ(Z) can be
accomplished efficiently by a genetic algoritdfn Genetic
algorithms perform function optimization by treating each total
ordering as the genome for an individual “organism”. For the
purposes of the present optimization, the gen@ronsisted
of NgenesZ = [Z3, Z», ..., Zn]. Each geneZ;, was the ordering
of the substituents at scaffold siteThe smoothness of the total
orderingJ(Z) was used as the objective function. Individuals
with lower values ofJ(Z) were given a greater chance for
survival and reproduction. Thus, after a sufficient number of
generations, the genetic algorithm aims to find a minimal value
of J(Z).

The steady-state genetic algorithm implementation introduced
by Goldberg was used to find an optimal total ordeih&> This
algorithm proceeds as follows: First, an initial population of
100 individuals was generated with random total orderings. Then
the objective function value for each individual in the population
was calculated. After each generation, the 10 worst individuals
were removed from the population. These individuals were
replaced by generating 10 new individuals which were the

proximated by eq 9. Equation 9 can be evaluated over any largeoffspring of the 90 remaining individuals. Individuals with lower

set of R compounds. In this paper, we will evaluate eq 9 over
every compound in the substituent space, Re5 S x S x
... x Sy to ensure thaf(X) is smooth over the entire substituent

objective function scores were more likely to survive and
reproduce.
Different total orderings were sampled through genetic

domain. It should be stressed that this process does not involvemytation and crossover, which occurred during the mating
sampling (i.e., synthesizing) and measuring the properties of process. Mating was accomplished through sexual selection
every compound in the substituent space, but only evaluating ywhich favored individuals with lower objective function scores.

the gradient of the analytic approximatié(X) at every point
in the substituent space.

To find an optimal total ordering)(Z) was minimized over

the setZ of all possible total orderings

min J(2) (10)

The minimization in eq 10 may have several extreftaof

possibly good quality. The algorithm need only find at least
one good solution. The minimization &{Z) could be ac-

To generate each offspring, two parents were selected with a
probability proportional to the inverse of their objective function
scores. If neither crossover nor mutation occurred, then the
offspring was a genetic replica of one of the parents. Genetic
crossover occurred with a probability of 0.8. If crossover
occurred, then the genetic code of the offspring was generated
by selecting each gene from either parent with equal probability.
Thus, the product of crossover was a single offspring which
incorporated genes from each parent. Mutation occurred sepa-
rately for each gene with a probability of 0.2 and could occur

complished by a brute force algorithm that samples every along with crossover. If mutation occurred, then a segment of
possible total ordering. However, the number of possible total random length was removed from the mutated gene and
orderings grows a§|iN S!. Even for a relatively small library reinserted into a random position in the gene. Figure 1 shows
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TABLE 1: Reordering of Substituents for the Linear Model 14 T T T * T i ' T '
Function in Equation 11: Inversion of Order for Z ; and Z;
Is Irrelevant, since Only Relative Ordering Is Significant

a schematic illustration of crossover and mutation. The frequent -
occurrence of crossover and mutation ensured that the genetic
algorithm sampled a diverse selection of orderings.

The definitions for mutation and crossover were based on  f
the logical behavior of the objective functid(Z). For instance,
it is likely that an individual possessing a gene for the optimal
ordering of a single scaffold site will have a low objective
function score. Thus, crossover preserves the entire ordering of
a single scaffold site (i.e., a gene of one parent) in the genetic =~ 2——— i — b — o
code of the offspring (cf., Figure 1). As each scaffold site will Generation
likely have a unique chemical/physical role upon the observable, Figure 2. Smoothness of the best solution versus genetic algorithm
it genera”y makes no sense to consider crossover betweergeneration for reOrdering of the |inear mOdel.fUnCtion. The dashed line
different sites (i.e., different genes). Similarly, low objective S the smoothnes&=aof the sequential ordering.

function scores may be the result of large segments in a genepe the smoothest ordering as defined by egs 5 and 10. It is also
which are optimally ordered. Mutation attempts to correct the ot guaranteed that there is a unique smooth total ordering for
poorly ordered segments of individual genes through rearrange-any function; many total orderings may be display good local
ment. o _  optimality, as defined in eq 10.

In the limit of a sufficient number of generations, genetic In this first example, the cut-HDMR approach based on eq 2
algorithms will explore the entire substituent ordering space  quld immediately lead to the solutialfZse9 as the function
However, such a thorough exploration would be prohibitively g(X) in eq 11 is separable. Thus, as a more general test of the
time-consuming and generally unnecessary, as any good 50|Uti°r}eordering procedure, a data set was generated by randomly
should suffice for molecular property interpolation. The ef- sampling M = 100 of the library compounds, with the
ficiency and accuracy of the genetic ordering algorithm were constraints that every substituent was used in at least one
investigated for several test cases based on a fixed nuivber, sampled compound and that no compounds were duplicated.
of data samples. The results of these experiments are given inysing this data set, the genetic ordering algorithm was run for
section lll. No attempt was made to explore an iterative 2000 generations. Figure 2 shows a plot of the best solution
algor.it.hm that would seek a minimal number of samples for a ygrsys generation. The genetic algorithm converged to a
specified level of smoothness. solution, Z*, with objective function value)(Z*) = 2.78 after
1100 generations. Since 10 new individuals were created each
generation to replace the 10 worst individuals, each generation

Several numerical experiments were performed to test the required the sampling of 10 new total orderings. Thus, the

utility of the ordering algorithm. First, the algorithm was tested genetic algorithm located an optimal soluti@f by sampling
by using simulated data generated by a linear, separable property.11x 10* total orderings on the space The objective function
function. The performance of the algorithm was then tested using value of the sequential total ordering wa8%= 2.82. Hence,
a more complicated quadratic model function with cooperative the genetic algorithm converged to an optimal total ordering.
coupling. Finally, the algorithm was used to predict the glass Furthermore, this optimal total ordering recovered the relative
transition temperatures of a library of copolymers studied in a ordering ofZ=¢4for almost all of the substituents (see Table 1).
previous papef. A radial basis function regression using tkle= 100 sampled

For the first example, a library with three substituent sites points and the optimal orderingy was used to predict the model
(N = 3) and 10 substituents per sitg & S, = S = 10) was function values for the unsampled points. The average RMS
considered. Thus, the complete library had 1000 compounds.error of the regression on the 900 unsampled points was 0.65.

I1l. llustrations

The property function was Figure 3 shows a plot of the predicted value of the model
function versus the actual value of the model function. For
gZ(x) =X, + X, + X (11) comparison, a radial basis function regression using the same

M = 100 sampled points and a random (i.e., nonsmooth)

where Z refers to the total ordering of the substituents. A ordering gave an average RMS error of 5.0. Figure 4 shows
reference case was choserZa¥with sequential ordering (see the predicted versus the actual value of the model function for
Table 1). EachX (i = 1, 2, 3) took integer values on the the random ordering. Comparing Figure 3 to Figure 4 shows
rangel10 We define that substantial gains in accuracy were made by determining a
smooth ordering for the substituents prior to regression.
J= J(2%%9 (12) The efficiency of the genetic algorithm was then compared
to a brute force implementation by sampling the objective
to be the smoothness of the sequential total ordering for a givenfunction values of 1.1k 10* randomly selected total orderings
data set as defined by eq 9.sfnooth total orderings defined on the ordering spacé. None of these total orderings displayed
to be any total ordering* such thatJ(Z*) < J*¢9 In general, an objective function value of less than 9. Figure 5 shows a
a finite sample size can effect the distribution of smooth total histogram of the smoothness values. The distribution of smooth-
orderings over the ordering spaceandZs¢dmay not actually ness values had a meanJbf 18.6 and a standard deviation of
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Figure 3. Predicted values of the linear model function using the
identified smooth orderin@* versus the actual values for the 900
unsampled data points.
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Figure 5. Histogram of smoothness values for 1x110* randomly
sampled orderings of the linear model function. Random sampling of
the orderings is shown to be very inefficient compared to using the
genetic algorithm in Figure 2.
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Figure 4. Predicted values of the linear model function using a random Figure 6. Smoothness of best solution versus genetic algorithm
(i.e., nonsmooth) ordering versus the actual values for the 900 generation f_or the reordering of the quadratlc_: model _functlon. The
unsampled compounds. This behavior should be compared to that founddashed line is the smoothne#8?of the sequential ordering.

in Figure 3 using the identified optimal orderiizy.

2.3. If we estimate that this distribution is approximately

TABLE 2: Reordering of Substituents for Quadratic Model
Function in Equation 13: Inversion of Order for Z ; Is
Irrelevant since Only Relative Ordering Is Significant

Gaussian, then a brute force implementation would have

required more than-10'1 samplings to find an optimal total Zs4 z*

ordering with a smoothness value of less tl3&f Z1 1234567891010 9876543 12
The next example tested the algorithm using a nonlinear Z 1 2 3 4 56 7 8 9 10 1 2 3 465 7 10 9 8

model function, Z3 123456789102 41357618 910

value J(Z*) = 229 after 699 generations and a total of 7090
objective function evaluations. The optimal total ordering located

We again considered a scaffold with three substituent sites andy the genetic algorithm also displayed good agreement with
10 substituents per site, giving a complete library of 1000 the sequential total ordering of the model function (see Table
compounds. Thus, each variabfeagain took integer values  2). Aradial basis function regression using Me= 100 sampled
on the range [1, 10], as in the first example. The observed valuespoints and the optimal orderirig) was able to predict the model
of M = 100 randomly selected compounds were used as thefunction values for the 900 unsampled points with an average
data set. The objective function value of the sequential total RMS error of 11.6. Figure 7 shows a plot of the predicted versus
orderingZsedin Table 2 was)*®d= 236. the actual value of the model function for the optimal ordering.
The genetic ordering algorithm was run for 1000 generations For comparison, a radial basis function regression using the same
and was again able to converge to a smooth total orderingM = 100 sampled points and a random (i.e., nonsmooth)
despite the increased complexity of the model function. Figure ordering gave an average root-mean square (rms) error of 33.3.
6 shows a plot of the best solution versus generation. The geneticFigure 8 shows the predicted versus the actual value of the
algorithm converged to a solutiof* with objective function model function for the random ordering. Comparing Figure 7

g°(X) = X2 — (X, — X5 (13)
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Figure 9. Plot the experimentdl, values versus polymer substituents
for the original sequential ordering*®4 X, is the diacid substituent
variable.X; is the diol substituent variable. Compounds sampled in
data set A are shown.

TABLE 3: Reordering of Substituents for the Experimental
Ty Data Using Data Sets A and B: Z Is the Ordering of the
Diacid Substituent, and % Is the Ordering of the Diol
Substituent.

data points. 7n
Z, 2 8 7 6 5 4 3 1
reor o Z, 7 4 2 12 10 11 9 1 6 13 14 8 3 5
100} o g ° p Z8
Jdeg oo Z,2 7 86 5 4 31
L 8 o 0ge8 885
80 °§°?§§S§ Z, 12 11 4 7 10 2 9 1 6 13 14 8 3 5
- )
60 - of 8° ée%
% ° ? o Rather than using traditional descriptors as a guide, the present
2 h §§ oo algorithm used only the experimentlj values of a subset of
8w o g@ % o the library compounds. Thus, no additional information regard-

=

ing the structure or physical properties of the substituents was
incorporated into the prediction algorithm. As with the prior

I
3

two examples, the primary purpose here is to test the essential
reordering algorithm; later work will aim to exploit features
such as simplification with HDMR, inclusion of data errors,
or and generalization to more complicated physical systems. To
investigate the influence of structured and unstructured sampling
on property prediction, we applied the ordering algorithm to
Figure 8. Predicted values of the quadratic model function using a two different data sets, each consisting of 35 library compounds.
random (i.e., nonsmooth) orderiversus the actual values for the  The first data set A consisted of 35 randomly sampled
900 un_sarr_]pled compounds._ This' k_)ehavio_r should b_e compared to thatcompounds. The second data set B consisted of 21 compounds
found in Figure 7 using the identified optimal orderiAg. selected by cut-center structured sampling and an additional 14
) . o o randomly selected compounds to account for nonseparability.
to Figure 8 again shows that significant gains in accuracy were tha cut-center compound was arbitrarily chosen as the first
made by d_etermining a smooth ordering for the substituents prior compound listed in the data table provided by Reynolds &t al.
to regression. The reference sequential total orderi@gedof the substituents
Having verified the behavior of the ordering method to find was the order in which the substituents were listed in this data
a smooth ordering using simulated data, the algorithm was table. However, unlike the first two test cases, the original
applied to experimental data from a polymer library. A previous sequential total ordering for the polymer library was not a
study by Reynolds et al. used Quantitative StructiReoperty rational, smooth ordering. Figure 9 shows a ploty&#{(X) with
Relationships (QSPR) to predict the properties of a 112- the 35 sampled compounds in data set A highlighted, and it is
compound polymer library from a representative 17-polymer evident that a scattered sampling Mf<12 compounds will
data set. The library considered by Reynolds et al. consisted produce unreliable interpolation without first seeking an optimal
of two substituent sites: a diol substituent and diacid substituent. ordering of the substituents. To find a rational total ordering,
A total of 14 diols and 8 diacids were used to synthesize a z*, for which the model function was smooth, the genetic
complete library of (14)(8% 112 compounds. Property predic-  ordering algorithm was used.
tion was accomplished using two-dimensional topological  The genetic algorithm converged to total orderings for both
descriptors to characterize the substituent groups. The glassdata sets within 1000 generations. Table 3 compares the total
transition temperature propeity of the polymers in this library ordering ZA obtained for data set A to the total orderid§
was found to be highly dependent on the chain length of the obtained for data set B. The orderings of both the diol and diacid
substituent diacids and didl€Once suitable molecular descrip-  substituents obtained for both data sets showed extensive
tors were identified, QSPR models were then derived from the agreement. Figure 10 shows a plot of smoothness versus
experimentally values for the representative 17-polymer data generation. Figures 11 and 12 show plotg@f) versusX using
set using linear regression. These models were shown to haveZ” and ZB, respectively. The increase in smoothness for both
good agreement with the experimental valueg of data sets achieved by the genetic algorithm was significant upon
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Figure 10. Smoothness of best solution versus genetic algorithm Figure 13. Predicted values versus experimental valuesTfoof 77
generation for the reordering of experimental glass transition temper- ynsampled polymers using data set A.
ature, Ty, data from data sets A and B. Data set A contained

experimentally values for 35 randomly sampled compounds. Data set 90 .
B contained experimentd}, values for 21 compounds selected by cut- o’ ’
center sampling and 14 additional randomly selected compounds. 801 o 9°
00, ~
s 97
| 70 [e)ed
o o]
o ©
60 o &S
26 o
& 00%
50 ° o7 000
3 T 8P g
:u6> 9, o o
& 40 ° ’OO
7z - ©
‘00 (0]
30 o o2%°
P00 ©
20} L @9%0
L7860 o0
. o
101 e
s 7 ©
Figure 11. Plot of Ty versus polymer substituents for the optimal 0k’ ' 2 : : . . : v ‘
0 10 20 30 60 70 80 90

orderingZ” using data set AX is the diacid substituent variablX,
is the diol substituent variable. Compounds sampled in data set A are
highlighted.
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Figure 14. Predicted values versus experimental valuesTfoof 77
unsampled polymers using data set B.

characteristic needed for interpolation. Both surfaces could serve
equally well for property optimization and interpolation as
shown below. The precise appearance of the surfaces depends
on the defined smoothness cost in eq 5 as well as the sampled
data. The introduction of an additional curvature cost (i.e., (1/
RS FI|V2gZ(X;)||) would tend to make the surfaces more
similar in cases A and B.

The values fofTy predicted by the regression functi(x)
using the optimal total ordering* were compared to the known
values ofTy for the unsampled library compounds. Sampling
and reordering of the library compounds led to a significant
Figure 12. Plot of Ty versus polymer substituents for the optimal increase in prediction accuracy. Using the randomly sampled
orderingZ® using data set BX; is the diacid substituent variablX, data in set A and the corresponding total ordei@fgpbtained
is the diol substituent variable. Compounds sampled in data set B arepy the genetic algorithm, the prediction @ for the 77
highlighted. unsampled compounds showed an average RMS error of 6.1
comparison of these figures to the sequentially ordered function°C. Using the structured sampling of data set B and the
shown in Figure 9. In each case, the genetic algorithm used acorresponding total orderirg?, the prediction off for the 77
data set of only 35 compounds to determine a smooth total unsampled compounds showed an average error of@.1n
ordering, and this total ordering generated a smooth model comparison, the best RMS error achieved by Reynolds et al.
function over all 112 synthesized compounds. The surfgées was 7.1°C. Figure 13 shows a plot of the predicted values of
(X) and g?°(X) in Figures 11 and 12 from data sets A and B Tg versus the experimental values Bf for the 77 unsampled
show considerable similarity as well as some distinct differences library compounds using the total orderi@g, and Figure 14
at smaller values oK,. These differences are of no relevance shows the same plot using the total orderitfy The statistics
for property estimation, as smoothness is the only essentialin Figure 14 using data set B show a small but evident bias.
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%0 . of the complete library. However, even fof = 2 andS =
L7 100, as in many pharmaceutical libraries, a reordering sample
o 4 . . . . . . . .
80 o © L7 size ofM < 10* will likely be sufficient. As the dimensionality
o o] 4 . . - .

o e of the library increases, it is estimated that a much smaller
or 8 o ¢ o fraction of the complete library may be synthesized for
sl o ©o Y equivalent interpolation performance.
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o L0 o o © This problem becomes increasingly vexing when multiple

L o competitive properties must be simultaneously met. In such
okl . Lo . ; . R cases, it would be highly desirable to have as thorough a
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coverage as possible of the full library of compounds. However,
Figure 15. Predicted values versus experimental valuesTfoof 77 dlhreCt. SylntheSIS Qf full IIErarles IS generally ncl)t possible. The.
unsampled polymers using data set B without reordering. chemical properties of the s.ubstltuelnts can also vary dramati-
cally, thereby making it difficult to identify the proper sub-

This behavior likely arises from choosing a single cut-center Stituent descriptors responsible for compound properties. The
for structured sampling, as such a choice puts undue emphasignadvertent omission of an important descriptor or overemphasis
on the reliability of that small data set. of a less important descriptor could lead to inaccurate and
Finally, we compared the performance of the property Misleading property prediction. The algorithm presented in this
prediction algorithm to a straightforward regression approach Paper does not rely on traditional descriptors. The only
which did not search for a smooth total ordering. Using the “descriptor” used in the ordering algorithm is a discrete
original sequential total ordering® a radial basis regression ~numerical index label for each substituent. This simplicity makes
was used to fit the experimental data for the 35 sampled for generic applicability of the algorithm.
compounds from data set B. The prediction of this regression ~ Substituent ordering provides a means for the elucidation of
function for the 77 unsampled compounds showed an averagestructure-property relationships without the assumption of a
RMS error of 25.1°C. Figure 15 shows a plot of the predicted prior model. The substituent ordering algorithm has been shown
values of Ty versus the experimental values Bf for the 77 to be effective in identifying the underlying model structure
unsampled compounds using the sequential total ordering. Thusfrom simulated and experimental property data. Furthermore,
comparing Figures 13 and 14 to Figure 15 shows that substantialthe algorithm can identify an optimal reordering without
gains in accuracy were made by determining a smooth total sampling a prohibitively large number of orderings that would
ordering for the substituents prior to regression. be necessitated by a brute force approach. The efficiency and
Although the quality of the results of Reynolds et ahd generality of the substituent ordering algorithm should make it
those achieved by the reordering of data sets A and B area simple and powerful tool for library optimization and analysis.
comparable, the procedures are quite different. Working with  Future research will explore the performance of the substituent
descriptors in more complex applications, especially of increas- ordering algorithm for larger compound libraries including those
ing dimensionality, is a very difficult task. On the other hand, with higher dimensions. The inclusion of physical information
the simple assumption of property regularity should remain just regarding the model function will also be considered. For
as valid as the dimension rises, and the efficiency of this processinstance, the careful choice of a representative cut-center
should increase with dimension. In the third example, the compound can sometimes improve prediction ability of struc-
laboratory synthesis of 35 polymers can be accomplished in atured sampling. Use of multiple cut centers and additional
reasonable amount of time, but synthesizing one-third of the randomly sampled data can greatly improve property prediction.
compounds in a complete library for the purposes of library It would also be natural to build in the expectation of there
optimization is usually unfeasible. Fortunately, the efficiency being only relatively low-order substituent cooperation to fully
of the substituent ordering algorithm should improve signifi- utilize the capabilities of HDMR:° Empirical ordering of the
cantly with increased dimensionality, i.e., more scaffold sites, substituents based on perceived important physical properties
and with more substituents per dimension. For instance, theof the substituents may also be used to guide the ordering
ordering algorithm achieved optimal total orderings for the linear algorithm. The impact of input data error on the re-ordering
and the quadratic three-dimensional simulated model functionsand subsequent interpolation behavior needs to be investigated.
using only one tenth of the number of compounds in the In addition, the use of radial basis functions, though suc-
complete library. In general, the ordering algorithm is limited cessful, is not necessarily optimal. Other basis sets may be used
by the sampling frequency of each substituent. Optimal per- for estimating the smoothness of substituent orderings and for
formance for random sampling is achieved if each substituent data interpolation. It is hoped that further development of the
appears in multiple sample compounds. If the library compounds substituent ordering algorithm will increase both the efficiency
are sampled using cut-center regular sampling, then the numberand the accuracy of property prediction in compound libraries.
of sample compounds scales@N), along with the addition Finally, although this work was motivated by the desire to
of some modest number of random samples. On the other handgstimate molecular library properties as efficiently as possible,
the number of total library compounds grows@@Y). In low there are ancillary benefits to revealing library regularity. In
dimensions and small values 8fthe sampling density for re-  particular, it may be argued that revealing regular (i.e., smooth)
ordering can be achieved only by synthesizing a large fraction behavior over the full space of compounds is an essential step
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toward physically understanding the origin of molecular proper

ties, as well as molecular recognition in those cases where th

properties arise from molecut@eceptor interactions.
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